

BepiColombo MMO Payload Mercury Dust Monitor (MDM)

1st Meteor and Dust meeting

at National Astronomical Observatory of Japan 3 July 2007

BepiColombo Mercury Dust Monitor (MDM)

BepiColombo MMO Payload Mercury Dust Monitor (MDM)

Historical dust mission of inner solar system

Spacecraft	distance range (AU)	spin axis direction	sensor orien- tation (deg.)	$\begin{array}{c} {\rm mass} \\ {\rm thresh-} \\ {\rm old} \\ {\rm (g)} \end{array}$	sensitive area (m ²)	solid angle (sr)	dy- namic range
Helios $1/2$	0.3 - 1	Ν	65,134	$9\cdot 10^{-15}$	0.012	1.23	10^{4}
Galileo	0.7 – 5.4	S, E	120	$4 \cdot 10^{-15}$	0.1	1.4	10^{6}
Pioneer 9	0.75 – 0.99	N	90	$2 \cdot 10^{-13}$	0.0074	2.9	200
Pioneer 8	0.97 – 1.09	Ν	90	$2 \cdot 10^{-13}$	0.0094	2.9	200
HEOS 2	1	var.	0	$2 \cdot 10^{-16}$	0.01	1.03	10^{4}
Hiten	1	Ν	90	$2 \cdot 10^{-15}$	0.01	1.5	$3\cdot 10^4$
Ulysses	1 – 5.4	\mathbf{E}	85	$4\cdot 10^{-15}$	0.1	1.4	10^{6}
Pioneer 10	1 - 18	${f E}$	180	$8\cdot 10^{-10}$	$0.26^{(1)}$	2.8	1
Pioneer 11	1 - 10	Ε	180	$6 \cdot 10^{-9}$	$0.56^{(1)}$	2.8	1

 $^{(1)}$ initial area, actual area decreased as cells were punctured

Scientific Objectives

Dust Types	Scientific Interests		
Dust flux within the Inner Solar System	Confirm the flux and size distribution as a function of the heliocentric distance. In-situ measurement to constrain zodiacal dust cloud distribution model.		
Cometary Dust	Possible encounters with the cometary dust trails and highly eccentric trajectories.		
Beta Meteoroids	Direct flux measurement in the vicinity of Mercury (0.31-0.47 AU) help to understand mechanism and location.		
Interstellar Dust	Possible detection of large interstellar dust (>>1 micron) intruding so close to the		
Dust to Mercury (V orbit = 47.5 km/s)	Investigation of temporal and directional variations of dust influx throughout Mercurian orbit to identify the key meteoroid sources. Estimate external mass accretion rate to the Mercurian surface Constraint to space weathering effect on the Mercurian surface. Assessment of meteoroid impact contribution to the formation of the tenuous Na-K atmosphere.		
Dust from Mercury (V esc.= 4.25 km/s)	Search for Mercurian dust ejection (e.g., temporal dust cloud?) by meteoroid impacts, similar to the Jovian satellites. Possible interaction with the magnetic field, similar to the Jovian satellite dust stream.		

Dust flux near Mercury

from Mann et al. 2003

Circuit board & sensor frame

flight time: t velocity: v = L/tcharge: q = cV, induced voltage V and capacitance 1pF. energy: $mv^2/2 = qU$, acceleration voltage U mass: $m = 2qU/v^2$

Experiment chamber of the dust accelerator at HIT

BepiColombo Mercury Dust Monitor (MDM)

PZT sensor in the dust accelerator chamber

BepiColombo Mercury Dust Monitor (MDM)

Typical waveform (MPI-K)

Change with velocity (Iron particles)

BepiColombo Mercury Dust Monitor (MDM)

Particle mass vs. velocity by the van de Graaf dust accelerator

Vp vs momentum (Sample II

Rise time vs. velocity of single peaked pulse High speed impact (> 8 km/s)

A

BepiColombo Mercury Dust Monitor (MDM)

Installation of MDM and heat flow

A

Thermal mathematical calculation of the PZT sensor

近水点での温度分布 ピエゾの中心で193℃ 電極表面: 銀 α=0.50、ε=0.18 最悪条件での温度変化 (2周期 ≒ 20時間) ピエゾの中心で210℃ ボルトからの衛星への熱伝導小

BepiColombo Mercury Dust Monitor (MDM)

ピエゾの温度と電気容量

P.20

ピエゾの温度と出力

P.21

おわり(End)

BepiColombo Mercury Dust Monitor (MDM)